Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Biomedical Engineering ; (6): 39-46, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928197

RESUMO

Rapid serial visual presentation-brain computer interface (RSVP-BCI) is the most popular technology in the early discover task based on human brain. This algorithm can obtain the rapid perception of the environment by human brain. Decoding brain state based on single-trial of multichannel electroencephalogram (EEG) recording remains a challenge due to the low signal-to-noise ratio (SNR) and nonstationary. To solve the problem of low classification accuracy of single-trial in RSVP-BCI, this paper presents a new feature extraction algorithm which uses principal component analysis (PCA) and common spatial pattern (CSP) algorithm separately in spatial domain and time domain, creating a spatial-temporal hybrid CSP-PCA (STHCP) algorithm. By maximizing the discrimination distance between target and non-target, the feature dimensionality was reduced effectively. The area under the curve (AUC) of STHCP algorithm is higher than that of the three benchmark algorithms (SWFP, CSP and PCA) by 17.9%, 22.2% and 29.2%, respectively. STHCP algorithm provides a new method for target detection.


Assuntos
Humanos , Algoritmos , Encéfalo , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Análise de Componente Principal , Processamento de Sinais Assistido por Computador
2.
Journal of Biomedical Engineering ; (6): 38-44, 2020.
Artigo em Chinês | WPRIM | ID: wpr-788898

RESUMO

The research on brain functional mechanism and cognitive status based on brain network has the vital significance. According to a time-frequency method, partial directed coherence (PDC), for measuring directional interactions over time and frequency from scalp-recorded electroencephalogram (EEG) signals, this paper proposed dynamic PDC (dPDC) method to model the brain network for motor imagery. The parameters attributes (out-degree, in-degree, clustering coefficient and eccentricity) of effective network for 9 subjects were calculated based on dataset from BCI competitions IV in 2008, and then the interaction between different locations for the network character and significance of motor imagery was analyzed. The clustering coefficients for both groups were higher than those of the random network and the path length was close to that of random network. These experimental results show that the effective network has a small world property. The analysis of the network parameter attributes for the left and right hands verified that there was a significant difference on ROI2 ( = 0.007) and ROI3 ( = 0.002) regions for out-degree. The information flows of effective network based dPDC algorithm among different brain regions illustrated the active regions for motor imagery mainly located in fronto-central regions (ROI2 and ROI3) and parieto-occipital regions (ROI5 and ROI6). Therefore, the effective network based dPDC algorithm can be effective to reflect the change of imagery motor, and can be used as a practical index to research neural mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA